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Introduction 

The history of humanity's love affair with knowledge consists of finding reason and 

rhyme to the seeming madness of nature. Science has been at the head of this charge, attempting 

to light the dark room in which we have found ourselves. Science's light of explanation is a 

confident one which asserts that given one scenario another scenario will inevitably follow. This 

approach is startlingly fatalistic, and this fatalism has especially taken hold of the 20th and 21st 

centuries, spawning philosophies such as naturalism and its blunter cousin, nihilism. The 

discovery of chaotic mechanisms both affirms and laughs at this confidence. On the one hand, it 

confirms that structures within nature are determined, given a certain set of parameters, one 

result inevitably follows. On the other, it asserts that there is no possible way for us to know the 

result. This thesis will hopefully contribute to an assault of this latter proposition, in discussing 

the hidden structure behind the chaotic behavior of the Williamowski-Rossler Network. 

First, we should define our terms. Plato wisely suggests, "For if your starting-point is 

unknown, and your end-point and intermediate stages are woven together out of unknown 

material, there may be coherence, but knowledge is completely out of the question. ,i So what is 

chaos? Steven H. Strogatz proposes the following as a working definition, noting that there has 

yet to be a universally accepted definition of such an esoteric idea, "Chaos is aperiodic long-

term behavior in a deterministic system that exhibits sensitive dependence on initial 

conditions."ii We can define rules for chaos then: 

(1) It is aperiodic, it will not converge to any point or periodic pattern, though it is certainly 
not random, leading to our second requirement. 

(2) It is deterministic, there is only one result for one set of parameters. 
(3) It displays sensitive dependence on initial conditions, a small perturbation between two 

sets of parameters will diverge exponentially fast. 
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A frequent analogy to this structure is called "the butterfly effect." This term, coined by 

Edward Lorenz, was first discussed by Ray Bradbury in the short story, A Sound of Thunder. In 

this story, a group of time travelers go back in time, and one of them inadvertently crushes a 

butterfly beneath his boot. They go back to the future to find, much to their chagrin, that the 

world has been dramatically altered in a way such that they could never have possibly foreseen. 

The death of the butterfly was a small alteration in the set of parameters of the universe, but the 

trajectory of the future was altered in a way that was inherently unpredictable. Note, it was still 

determined; this change to the future was because of the butterfly's untimely death. And the 

future, being the strange thing it is, does not converge to a point or pattern. t So this example is an 

excellent glimpse into a chaotic universe. 

Chaos, it appears, is much easier to describe by what it is not. Any system that converges 

to equilibrium or periodicity is not chaotic. Any system that is random and therefore not 

determined is not chaotic. And any system that does not have sensitivity to its initial conditions 

is not chaotic. So a chemical reaction that converges to equilibrium is not chaotic, nor is the 

system that oscillates regularly between some set of finite points. 

The first two requirements are fairly easy to understand. Determinism and aperiodicity 

are intuitive, what of sensitivity? Sensitivity is a condition which prevents predictability based on 

similar sets of parameters. If a system is not sensitive, it will not be too difficult to predict the 

behavior if one changes the parameters ever so slightly. Sensitivity makes this impossible; the 

slightest change in any parameter in a chaotic system will ultimately result in a drastically new 

result. We can measure this by observing the difference of populations in a system over n 

t This certainly is a more philosophical claim, and the weakest made in this analogy, but the point remains. 
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iterations over two systems that are identical with the exception of one small perturbation. We 

can set this up by setting the differences equal to each other, but pairing one with an exponential: 

In this definition, n is number of iterations, o0 is the perturbation, the initial difference, 

and On is the difference in conditions after n iterations. II. is known as the Liapunov constant. 

Some algebraic trickery will result in: 

1 On 
II.= -In(-) 

n o0 

If II. is positive, then the system is sensitive, implying that it is a chaotic system; slight 

changes in initial conditions will result in an exponential difference in results. iii 

Note that the combination of the first and third rule (see page 1) renders any chaotic 

system incredibly difficult to predict. There is no convergence to a point or periodic behavior. 

There is no way of telling how one set of parameters will behave based on the behavior of other 

sets of parameters. Yet the second rule keeps us from saying that it is random. 

So, this is what chaos is. But how do we map chaos? What does it look like? And most 

importantly, is there a method to the madness behind chaos? The purposes of this thesis will be 

first to highlight some different ways to view chaos, and then looking into the underlying 

structure. This thesis will be building off of the work of the senior thesis of Aaron Bushiv, whose 

examinations into the structure of chaos have been nothing but illuminating and insightful. 

Phase Portraits 

One basic way to qualitatively examine chaos is found in mapping out its attractor, 

constructed by plotting the present vs. the future. This is known as a phase portrait. The 
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horizontal axis of such a graph is the system at timet, plotted against the vertical axis of the 

graph, the system at time t + r, where r is a constant time step size. For the following section we 

set r = 300. This results in a structure that clearly indicates the where a system goes, indicating 

convergence, periodicity, or a lack of either. 

The phase portrait of a convergent system will eventually come to rest at a single point, 

making no movement after this. This is due to the fact that the value of the system t and t + r 

approach the same result, so eventually, as t ~ oo, f(t) = f(t + r). Displaying this is Figure 1, 

as system that is convergent. l .S -----------·------------------ - ---

Accordingly, its phase portrait 

converges to equilibrium. Notice 

that our portrait's path begins x(t+r) 

roughly at (.2, .62) and after a 
0.5 ~-- ·-·- . -- . - ---- ----------------------------- -----·-··-·-- . --

short stint of oscillations, settles 
0 -----··-·· ···-- ·--------·------·------·------···-····-------

at roughly (1.2,1.2). It will not 0.5 1.5 2.5 

x(t) 

move after this, for f(t) = f(t + Figure 1: A convergent system approaching a single point. 

r) as t ~ oo. 4 -- ---------- -- ---- ----·- ---. --- --------------·---------- --

3.5 -------· ~---------------------------- --

A periodic system will be 3 --·· 

modeled as a loop, given that, for 
x(t+r) z ----f----c - ---------------

every value x1 at time t1 , there is 1.5 - ---·- __ /_____ ~-,------ -- --------------·----

a t 2 > t1 such that the value x2 at 

t 2 will equal x1 . In essence, there 0 --

0.5 1.5 2. ~ 3 5 

x(t) 
~------------------------------

is only a limited amount of values in 
Figure 2: An system approaching stable periodicity. 
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the system, and so it will constantly loop back on itself. The phase portrait of a system that 

settles to periodicity (Figure 2) displays this behavior, starting at approx. ( 1, 1.277) and quickly 

settling into an infinite loop, or limit cycle. 

A random, noisy system willlookjust that in the phase portrait (Figure 3). Given that 

there is no rhyme or reason to the ------- - -------------- --·- - - --------- ----
100 -· .• ·------------~----· - -- ·----------~---- ~ ----··------

system, no consistent pattern, 

there will be no correlation 

between t and t + r . So the f(t+'r) 5o - - -+---+---~-'< 

~~~-::: 

points on the phase portrait will 30 ----

20 ··-· 

be as random and noisy as the 
0 ----- . ----------~---~--

system they model. 0 ro w ~ 80 100 120 

f{t) 

Figure 3: A random, noisy system. 
What about chaotic 

------·---
systems? These systems are not 80 - ---- -------------------------·---- ---------·--

noisy (determined), but they are 
70 --~----
60 - -- ------------·------·------------------·----·----··--·- . ------------ . 

not convergent to periodicity or 50 ---~-----------

x(t+t) 4o :--

to a point. They are aperiodic, so 
30 - - ----------··· - - ------------------

they will not be repeating 20 

10 

themselves regularly; however, 
20 40 60 80 100 120 

given that it continually goes x{t) 

through a similar pattern, the 
Figure 4: A chaotic system. 

phase portrait will continually loop back on itself in varying paths. Consider the Williarnowski-

Rossler Network (Figure 4), which we will soon explore. It is clear that x has no periodicity, 

there is no infinite loop it settles into. However, it is certainly not random. 
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Bifurcation Diagrams 

There are several ways to view chaos, phase portraits are certainly not the only way. One 

of the more powerful methods is the bifurcation diagram. The main contribution of Aaron's 

thesis lies in these diagrams, in which he was able to find underlying structure. This thesis will 

first explore bifurcation diagrams, explaining how they are constructed and what exactly it is 

they show. Code in Java has been written to analyze these diagrams for underlying structure, 

continuing Aaron's work and pushing it further. 

A bifurcation diagram takes a system and, varying one parameter of the system, tracks 

the changes that follow from this variation. So instead of looking at progress over time, it looks 

at progress over the change of a certain parameter. While progress over time will result in a one-

to-one mapping, progress over the change of a certain parameter does not. For some parameter 

value, all results from some time tn to another time tm are mapped. Steps t0 through tn-l are 

ignored, as these consist of an "incubation period." Adding these values would only catch the 

system when it is starting up, which distracts us from the information we want. 

The easiest example of a bifurcation diagram is found by analyzing the logistic equation, 

which is used to model population growth. The equation is defined as follows: 

dp - = rp(l- p) dt 

Here, t is time, p is population, and r is the growth rate parameter. We can approximate 

this using Euler's method, yielding the following one dimensional map: 

Pn+l = TPn (1 - Pn) 
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This allows us to programmatically examine the logistic equation. This form of an 

equation matches program language very well. We will first examiner values of2.9, 3.0, 3.45, 

and 3.8 with a starting population of .1, and then look at the progression of r values, forming a 

bifurcation diagram. 

For r = 2.9, the population very quickly converges to roughly .655 (Figure 1.1). For 

r = 3.0 (approx.), the population begins oscillating between two values, approximately .678 and 

.654. For r = 3.45 (approx.), the population begins oscillating between four values. And for 

r = 3.8 the population becomes erratic, never coming to any sort of oscillatory behavior. So we 

see that as r increases, the system becomes more and more frantic, oscillating more wildly. 

Eventually, after r = 3.5699 (approxY, the system becomes chaotic, reaching aperiodicity. 

The progress of this is clearly seen in the bifurcation diagram (Figure 5). As r increases, 

1.2 -~ --

p 0.6 

0 .L-----------r----------·--r----------~----------~------------~-------~~ 
2.85 3.05 3.25 3.4 5 3.65 3.8 5 4.05 

r 

Figure 5: The bifurcation diagram of the logistic equation. 
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the population convergence becomes more frantic. And this gives us a visual representation of a 

transition from a stable system to a chaotic system. When r is 3.45, the logistic equation is not 

chaotic, but when r is greater than 3.5699 (approx.) we see aperiodicity completely take over. 

The Williamowski-Rossler Network 

It is not with the logistic equation that we are concerned with though. There is another 

system that displays chaotic behavior called the Williamowski-Rossler Network. This system is 

far more complicated than the logistic equation, being a multivariable system, all variables being 

dependent on another. The system is modeled by the following set of chemical equations: 

Scheme 1 

Where A11 ... , A5 are constants, and X, Y, Z chemical variables. This translates into the 

following set of differential equations: I Scheme 2 

For simplicity's sake we may absorb the Ans into the kns, given that both are constants, 

resulting in: 
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Scheme 3 

There are many ways to induce chaos, we will be looking into varying the k3 variable 

from 9.85 to 10.0. We can create a bifurcation diagram with ease given the following one 

dimensional map by using Euler's approximation again: 
Scheme 4 

Xn+l = Xn + (k1x - k_ 1 x 2 - k2xy + k_2y 2 - k4 xz + k_4 )dt 
Yn+l = Yn + (k2XY - k-2Y2 - k3y + k_3)dt 
Zn+l = Zn + (k5z- k_5z 2 - k4xz + k_4 )dt 

Where dt is a very small step size. For the duration of this thesis, we will set k1 = 

30, k2 = 1, k4 = 1, k5 = 16.5, k_ 1 = .25, k_ 2 = .001, k_3 = .01, k_4 = .01, and k_ 5 = .5, with 

our step size, dt as .0006. Recall that k3 will be varied to induce chaos. Given this 

approximation set, it is 
100 . 

very easily to 90 -------------

80 -------
programmatically 

construct both a phase 

portrait and a 40 -----~ - - -

30 ..•. 

bifurcation diagram in 

the same way that we 0 
10 20 30 40 so 60 70 

did with the logistic x(t) 
- ----- - ----

equation. Figure 6: The phase portrait of the Williamowski-Rossler Network. 

First though, we must confirm that it really is chaotic. We will run this system through 

the three tests prescribed by Strogatz, lack of convergence, determinism, and sensitivity. 

80 90 
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To judge if there is convergence, or a lack thereof, we may use the phase portrait. Let us 

gain a glimpse into the behavior modeled by the phase portrait. We are tracking the behavior of x 

with r = 60 (Figure 6). Notice how the portrait is exactly how we would expect a chaotic system 

to be, with behavior that repeats in similar, but never the same, method. So we can rest assured 

that our system does not settle into any sort of periodic behavior, nor does it converge to a point. 

Our phase portrait clearly portrays this. 

The second requirement is determinism, and this is passed without question. Clearly this 

system is determined, given a set of parameters and initial values, there can be only one 

outcome. Running a simulation with a set of parameters and initial values repeatedly yields the 

same result each time. 

What of sensitivity? Consider our test for this, finding the Liapunov constant: 

We will first run 
100 -- ------------ --------------- ----- ·-

the system with x0 = 

Yo = zo = 1, and then run 

it the same with the 
· x~t.o 

40 - - il--- . -- - - - -t-·-t--1H -·-4---1-F----f.---l>-----f-

exception ofx0 = 1.01, 
30 r--: : c-- - · 

so 80 = .01. After 10,000 
20 

10 H -
0 . v~ steps (n = 10000), the 10 IS 20 25 

former's x value is - -- -· ------
Figure 7: Comparing the networks with different starting x values. 

7.426937, the latter's is 

11.15516. So 810000 = 3.728222. 
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Hence A = - 1-ln ( 3
'
728222

) = - 1-ln(372.8222) = - 1
- (5.921102). 

X 10000 .01 10000 10000 

Therefore Ax = .000592. 

We may then run the system setting y 0 = 1.01, and again z0 = 1.01 (Table 1). In 

changing y0 , we will guage A by the corresponding differences in y values, and do the same 

with z. The respective A values are Ay = .000726 and Az = .000661. Given that A is positive in 

all cases where n = - --- -------·- --==-=======--==-=·----!()() -------· -- ----------

90 -------- -- -- ----- ---- ---------- -------

10000, we can safely 80 

70 -·---------

claim that there is an 
60 ---- --- ·-----

exponential difference in cS_n so -----

~-~ . 

the results given by two 30 ------1-- _\_ -l 
20 -----~-' - l 

different initial starting 

values. In fact, even if we 10 IS 20 25 

t 

expand the test to include all Figure 8: Comparing the differences in the divergent systems over time. 

variables for all modifications, the A value is positive in all the test cases. Therefore we may 

conclude that this system passes the test of sensitivity. 

But how long does it take to display sensitivity? First, we gain an intuitive look at 

sensitivity in Figure 7, which plots the first 40,000 steps, each discrete step representing .0006 

seconds. Notice how at around second 10 the two systems begin to widely differ, only having the 

same x value out of necessity, when one is ri~ing and the other falling or some other coincidence. 
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Plotting the On value against time (Figure 8), yields a look into the sensitivity of the 

system, and we can clearly see that it takes roughly 5 seconds for the system to become 

significantly different. This matches perfectly with Figure 7, as the first divergence is at the 51h 

second. 

Plotting the Liapunov constant against step yields a simlar result. Note that a system need 

not have a negative A value at all times for it to be chaotic. Indeed, this would be impossible, as 

there are only a finite 

number of values that a O.DI5 

system may have. A 0.01 --t----- ------------

0.005 . ---

negative A value indicates A 

10 15 25 

a small difference between 
-0.005 ·- ------------ -·- ··-·---· --- -------·----------· - -· -------- - ··-··----··--···--

the two systems at that -0.01 1------

point in time, which may ·0.015 ---

t 

be explained by the fact Figure 9: The liapunov constant of the two divergent systems over time. 

that the two systems simply happened to be at a similar or same value x for some step n. Given 

that the system is contained within a finite set of 
A. values X= 1.01 y = 1.01 z = 1.01 

points and is not convergent, this is unsurprising. 
Ax .000592 . 00051 .000455 

All three tests have been passed, the A.y .000576 . 000726 .000655 

Williamowski-Rossler is chaotic for our set of Az .000577 . 00073 .000661 

parameters. But what does this chaos look like, 
Table 1 

how can we describe it? We have a sample of it with our phase portrait, can we go further? 
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And it is not with the phase portrait that our main focus resides. It is in the more telling 

bifurcation diagram that we are most interested. However, upon creation of the diagram we fmd 

that it does not share some of the distinctive elements of the logistic equation's (Figure 10). This 

is due to the fact that there is no convergence to a single point in this network, so this bifurcation 

diagram rather shows the 

range of possible values for ! 20 I 
I 

each k 3 value. 

This is certainly not 

very useful, however, all is 

not lost. We can create a 

useful bifurcation diagram 

by only mapping out the 

peaks and troughs of the 9.8 9.85 99 9 .95 10 !0.05 10.1 10.15 10.2 10.25 10.3 10.35 

k3 

network. While a tedious Figure 10: The bifurcation diagram of the Williamowski-Rossler Network. 

and difficult task by hand, this is easily accomplished programmatically. While Aaron's program 

to accomplish this involved approximating a derivative to discover if there was a peak, the 

program constructed for this thesis simply checked if(xn-l < Xn > Xn+l) for a peak at Xn and 

if(xn-1 > Xn < Xn+1) for a trough at Xn · If the previous and the next x value are less than the 

current, then clearly the x is a peak. The same logic holds for the trough test. The bifurcation 

diagram created by this technique has the characteristic patterns found in the logistic bifurcation 

diagram (Figure 11 ). 
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So instead of marking where the system itself converges, the peak and trough amplitudes 

will be observed (Figures 11-13). With this system, interestingly enough, we fmd that as k3 

increases, the peak and valley amplitudes converge to oscillation between four points, unlike the 

logistic equation, which itself branched out rather than losing branches (Figures 11-13, k3 > 

10.2). 

We can go further though. This only modeled the progress of the x variable, we can 

model y (Figure 12) and z (Figure 13) as well, and then proceed to investigate any hidden 

patterns that the resulting graphs may have buried beneath them. Notice that the structures are 

very similar. Also notice the subtle wave patterns inherent in them. It is in these patterns that we 

are primarily concerned, and that the majority of this thesis will investigate. 

So, it took stripping away all values other than peaks and troughs to acquire some sense 

of order from the bifurcation diagram. The peaks and troughs therefore are of significance, and 

these modified bifurcation diagrams show us this very clearly. 

Our next step will therefore be to track specific peaks. We will continue Aaron's work by 

investigating the 15th peak of this network, and see what conclusions we may draw. 
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120 r-------------------~~========================================================================================~--, 

0 ---------~-... 
9 .8 9 .85 9.9 9.95 10 !0 .05 !0.1 ! 0 .15 10.2 10.25 10.3 10.35 

k3 

Figure 11: The bifurcation diagram of the Williamowski-Rossler Network, only considering x peak and valley values. 

*~====== 
kl 

Figure 12: WR network bifurcation diagram, y peak and valley values Figure 13: WR network bifurcation diagram, y peak and valley values 
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Investigating the 151h Peak 

Programmatically, it is not a difficult task to pull out the nth peak of any set of equations, 

and the Williamowski-Rossler Network is no exception. By tracking the 15th x peak, we obtain 

the result shown in Figure 14, 

with a higher resolution shown 

in Figure 15. Notice that there 
15th X 

are sections of continuity, peak 

however, notice also that these 

sections are choppy, going 

from sections of continuity to k3 

sections of continuity very Figure 14: The 15th x peak values for each k 3 value. 

abruptly. While there are hints 100 ----- -·--·---------·------ -- ····---- ... ------ -------- ·----·-- ---------

of a waveform, it is a very 

broken waveform. 

Even sections of 

continuity is better than none 

15th X 

peak 

!0 -----------· ·-· ------· ··--------- ·------- - --------- -

at all though, and there is a . - -. -0 ---------------------------------------------- -------
9.959 9 .96 9.961 9.962 9.963 9.96.:1 9.965 9 .966 

way that we can force some 
k3 

Figure 15: The 151
h x peak values for each k 3 value, with higher resolution. 

pattern to emerge from this, 

much like we drew a pattern (Figure 11) out of our original bifurcation diagram (Figure 1 0). One 

element of this peak graph is the steady amount of very low peaks (Figure 14, circled data 

points). What if we could remove these holes? Would the graph fill itself in? Surprisingly, yes, it 

does just that (Figure 16). 
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The holes are removed by enforcing a minimum. We do so by requiring x to be greater 

than ten in order to qualify as a 120 --

peak, 151h peak or not. We will call 100 • 

80 . . 

this practice inflating, and any 
15th X 

60 

analysis on a system using this 
peak 

40 -

technique will be called an inflated 
lO · 

look. The minimum value will be 0 -
9.8 9.8S 9.9 9.95 10 10.05 10.1 IO.lS 10.2 lO.:Z.S 10.3 10.35c i 

w. By artificially inflating the 
k3 i 

--------------·------ ___________ _j 
Figure 16: The 15th x peak values for each k3 value, w = 10. 

peaks in such a way, requiring any 

peak value x to be greater than 

w = 10, we find, oddly enough, a 80 -------- -------

70 ·--------- -- ----- -

much more consistent continuity 60 ---- - H -----11-H-1- +1 
15th X so . --------

(Figure 16). Increasing the 
peak 

resolution to examine some of the 
10 ·-------------------------------~-- ----

questionable areas reveals 0 -------· ----~----------------- -------------~--- -----
9.959 9.96 9.961 9.962 9.963 9.964 9.965 9.966 

k3 
continuity as well (Figure 17), for Figure-i7: Th~ 151

h X peak valuesfor each i{3 value: w = io~ viith higher resolution. -

example, from 9.96 to 9.965. 

The very low peaks in the uninflated peak tracker disappear with inflation, and continuity 

results. This is surprising. We have not taken these low values and added 10 to them or any such 

thing. We have entirely replaced them with new ones. Consider that there exists some 13th peak 

that is below ten. Since this does not qualify for our inflated analysis, the 14th peak would take its 

place, if it is above 10. This process therefore shifts the peaks around in ways that are difficult to 

predict. This is why the graphs ofthe inflated and uninflated systems do not match (Figures 14 
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and 16, 15 and 17). It is not as if we only removed the lower peaks and that is all. Rather, we 

have uncovered an entirely new set that is continuous. The 15th x peaks that are above w = 10 

are continuous. 

There is, however, one notable and obvious exception. Figure 16, our inflated look at the 

system, which is continuous everywhere except between 10.1801215450983 and 

10.1801215450984 (Figure 16, circled discontinuity). Here there exists a leap from approx. 

28.73441 to 66.84738. This is quite anomalous, very much out of sync with the rest of the graph. 

I leave as future study the question of why this is. 

This anomaly aside, we 120 

have continuity on the 15th peak 100 

of x (Figure 16, 17), but we 
80 -

15th y 60 .. 

only have it by artificially peak 

<O 

inflating the peaks, discounting 
20 

any peaks that are below 10. 
0 -

9.8 9.85 9 .9 9.95 10 10.05 10.1 10.15 to . .Z 10.i.S 10.3 10-35 

Let us consider the other 

values ofthe system, y and z. 

We may track these in the same 

way that we tracked the peaks 

of x. Given that we noticed 

similar structure in the 

bifurcation diagrams of y and 

z , we should have very similar 

k3 

Figure 18: The 15th y peak values for each k 3 value. 

120 -- ·-~-- --·- --·---~--------~----------- -·-. -- . -- ·-· ------- --·--·-

80 -

15th y 60 

peak 

20 

9.959 9.96 9.961 9.962 9.963 9.96<1 

k3 
9.965 

Figure 19: The 15th y peak values for each k 3 value, with higher resolution. 

9.966 
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results. So, tracking the 15th peak of y and z from 9.85 to 10.3 will yield Figures 18 and 19 for y, 

as well as 20 and 21 for z. 

Notice how the 15th peak for y (Figures 18-19) and z (Figures 20-21) are both continuous 

throughout. Increasing the resolution only confirms this (Figures 19, 21 ). However, unlike the 

graph ofx's 15th peaks, these are continuous despite being uninflated. y and z both have similar 

anomalous breaks, but at different points than x, which is certainly an oddity. Upon closer 

inspection, it is revealed though it appears that z has two breaks, it is really only one. An 

increase in resolution shows 

that the only disconnect is at 

slightly above 10.11, the 

apparent disconnect at 

approx. 10.125 is actually 

continuous. But that aside, 

JS -

JO 

lS 

15th z 
lO - -·-- ·-

peak 1s _ 

10 -

s . 

0 . 

- 1\-J~---

-~-- - -

II 
9.8 9.85 9.9 9.95 10 to.O'i 10.1 10.15 10-l 10.25 103 10.35 

the fact remains that, with all 

peaks allowed to be whatever 

size, y and z' s peaks remain 

continuous throughout. 

One possible 

explanation could be found 

by looking at how the 

variables are related to each 

other. Note that dx is 
dt 

15th z 
peak 

k3 

Figure 20: The 151
hz peak values for each k 3 value. 

30 ------------·- ----------------------------- --· -- - - -·-----

lS ·-· • 

IS ----- --- ---

0 -- --
9.959 9 .96 9.961 9.962 9963 9.964 9.965 9.966 

k3 

Figure 21: The 151
h z peak values for each k3 value, with higher resolution. 
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dependent on all three variables, x, y, and z, whereas dy is reliant on x andy, dz on x and z. 
dt dt 

Perhaps then the discontinuities are due to x being more complicated. It is coupled to both y and 

z, whereas the latter two variables are only coupled to x (Scheme 4).vi 

Investigating the 151
h Valley 

What about the valleys? We can construct a similar image for the 151h valley of the 

Williamowski-Rossler (Figure 22), and we find, unsurprisingly, that the valleys for x exhibit 

similar behavior to its peaks, with 

sections of continuity that are 

broken by discontinuities. 

However, unlike the peak 

graph (Figure 14), there is no 

discemable "line" of valley values 

that give an indicator of where to 

enforce a minimum or maximum. 

In the case of peak values of x, 

there was a discemable line of 

peak values that gave an indicator 

of where to begin in the inflation 

process, as this line needed to be 

eliminated. So if we are to force 

this to be continuous in a similar 

way as we did with the peaks, 

4 ---- ---- - ----···------------------- -------------- - --·- -------------

15th X 

valley 

15th X 

valley 

0 ---------------- -------------- ------ -----
9.8 985 9.9 9.95 10 10.05 10.1 10.15 10.2 10.25 !Q_J 1035 

k3 

Figure 22: The 15th x valley values for each k3 value. 

3 ------------------------------ -

2.5 ------- -------------

2 - -- - ·- ---- --------

1.5 -- -- - - -- ------------- --

1 --~---------------~------ -------- - ----- -------·- - •.. ------ ---------

05 

0 --
10.040S 10.041 100415 10.0111 10.04ZS 10.043 J0.043S 

k3 

Figure 23: The 15th x valley values for each k 3 value, with higher resolution. 

)0.044 
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there is no readily available minimum or maximum to enforce. 

In order to gain an appreciation of the effect enforcing a minimum w has on the graph, 

we will zoom in on the graph of x' s 15th valley values (Figure 22), giving us a much higher 

resolution with which to work. 

Our window will be 10.041 :::; 1 ------------

1.5 - ------

k3 :::; 10.0435, which, 

uninflated, displays clear 15th X 
1.5 

valley 
brokenness (Figure 23). 

I . --- ------------------·--- -------------------------------- -----------

After several tests (data 
0.5 - ------ -------- ---------------------------------

0 ------------------ - ~-- -- ----- ----- -----· 

not shown), it was found that 10.040S 10.041 10.0415 10.042 10.0425 10.0·13 10.0435 10.04-t 

k3 

adding a minimum Figure 24: The 151
h x valley values for each k 3 value, with higher resolution, w =. 45. 

requirement w for x's valley to qualify only becomes effective after we have crossed a minimum 

of w = .45. The leftmost 3 --------------------- - -- ----------------~-~---- ------------

discontinuity begins to 2.5 

disappear at w :::::: .4583 
15th X 

1.5 -~----------------- --------- -------------- ---------- --- ------------- -

(Figure 24 ), but reappears valley 

1 ·-----

swiftly thereafter, while the 
0.5 • - .. - - ---------

right discontinuity begins to 
0 - --------- -- - ------------- - ---- - - --- -------------

10.041 10.0415 10.042 10.0425 10.0•13 10.0435 10.044 

disappear at w :::::: .458835, k3 

Figure 25: The 15th x valley values for each k 3 value, with higher resolution, w = .4583. 
again reappearing quickly 

thereafter (Figure 23). 
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However, things become even odder when the w becomes .5 (Figure 26). The graph flips 

on itself, the lower edge becomes the upper, and the upper edges become lower (compare 

Figures 23 and 26). A look into the actual values reveals that this leap happens between approx. 

10.04136 < k3 < 10.04137 and 10.04313 < k3 < 10.04314 for both inflated and uninflated 

systems. The leap is the same, just inversed. 

So, while there has 
3 ------------

been no continuity found, we 
25 -'---- -------- - -·--- ---- - ----------- ------·-

have indeed found that there 

are ways of manipulating the 15th X 
1.5 -------------

valley 
- ---------

graph and forcing sections of I ---· ---------

continuity to appear. None of 0.5 ... ---- - - ---- -- -----· - --- --- -------- . 

0 -- -------- - ------

the minimums listed forced 10.0405 10.041 10.0415 10.042 10.0425 10.043 10.0435 10.04d 

k3 

the whole of the graph to 
Figure 26: The 151

h x valley values for each k 3 value, with higher resolution, w =. 5. 

become continuous like our 

peak graph, this only serves as an example of how the graph may be changed. 

Conclusions 

Chaos is deterministic, not random. And so it is unsurprising that there are patterns within 

it. However, it is surprising where these patterns can be found, and this is certainly the case here. 

We have found that there is broken continuity when tracing the 151h peak of the Williarnowski-

Rossler Network, but that this brokenness is smoothed over when artificially raising the 

requirements for what can be considered a peak. Continuity follows from inflation. Similar 

results, though not as complete, were found with the valleys of the network as well. 
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This continuity is not natural, it is forced. However, continuity is no trivial thing, and a 

slight modification that affects every part of the graph was enough to enforce total continuity. 

Even with the peaks, raising the requirements for qualifying for a peak forced a section of a 

graph to become close to continuous, as well as exhibit very strange behavior (flipping) . Peak 

and trough inflation therefore are worthy fields of exploration, as they have already yielded 

interesting and relevant results to the horizon of chaos. 
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